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Abstract. In this study we present theoretical predictions concerning the third-order nonlinear
optical properties of semiconductor carbon nanotubes for photon energies well below the
fundamental absorption edge. Both virtual interbandπ -electron transitions and combined
intraband–interband ones are assumed to be the basic microscopic mechanisms of optical
nonlinearities in this spectral region. Resting upon simple dimensional considerations and
using only model-independent properties of theπ -electron energy spectrum near the conduction-
and valence-band edges, we obtain theoretical estimations for the low-frequency third-order
susceptibilityχ(3)e (0) due to these two mechanisms, which sheds light on the relationship between
the non-resonant nonlinear optical response of nanotubes and their geometrical and electronic
structure. This result derived in physically interpretable terms is in good agreement with that
obtained in our recent study on the basis of a systematic analytical approach. We find that single-
shell ‘zig-zag’ nanotubes display positiveχ(3)e (0) values, which is due to the positive contribution
from combinedπ -electron transitions dominating the negative contribution from purely interband
transitions. We also find that the increase of the nanotube radiusR results in a strong enhancement
(∝ R4) of χ(3)e (0), which can reach values larger by several orders of magnitude than those
reported for the fullerene molecules C60 and C70. We draw a conclusion that the modification
of the geometrical structure of nanotubes provides an efficient means for the engineering of novel
nonlinear-optical materials with high cubic susceptibilities.

1. Introduction

The study of carbon nanotubes (CNs) is now an active area of research, which can lead to the
development of advanced technological devices. Despite the progress achieved in this field
during the last few years (for reviews, see [1–4]), a number of physical properties of CNs have
not been examined carefully so far. In particular, this applies to the nonlinear optical (NLO)
properties of CNs, which determine the nonlinear dependence of the polarizability of CNs
on the intensities of incident electromagnetic waves. To our knowledge, experiments on the
measurement of this dependence have not yet been conducted. Meanwhile, such experiments
have been performed for condensed phases C60 and C70 [5–12] and have exhibited interesting
NLO behaviours of these two fullerene molecules. Theoretical NLO response calculations on
the fullerenes C60 and C70 have been carried out by a number of authors [13–16] and are found
to be in good agreement with the experimental data of Wang and Cheng [6] and of Kafafiet al
[10, 11]. In the near future such an experimental study is expected to be performed for CNs,
which are fullerene-related materials. Therefore, it may be worthwhile to present theoretical
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information on the NLO properties of CNs, which would allow one to assess CNs from the
viewpoint of their possible applications in optic and opto-electronic devices.

The first step towards this aim has been made in our previous work [17], in which a
systematic analytical approach to NLO properties of single-shell semiconductor CNs has been
proposed. This approach was applied for the calculation of the susceptibilityχ(3)(ω), which
is responsible for third-order NLO effects such as the optical Kerr effect, third-harmonic
generation and degenerate four-wave mixing. It has been shown that the large values ofχ(3)

obtained along with the unique character of its frequency dependence in the transparency
region make CNs very attractive for practical purposes. It should be noted, however, that
a complete treatment of the above mentioned effects is not particularly simple and requires
cumbersome calculations based on the Genkin–Mednis perturbation theory technique [18],
most of which have been done numerically. Besides, this approach does not provide any deep
insight into the problem and is unable to explain the true nature of the relationship between
optical nonlinearities of CNs and characteristic parameters of their geometrical an electronic
structure. In this respect, a simple formulation shedding light on the NLO properties of CNs
in physically interpretable terms might be useful.

Our aim in this paper is to propose such a formulation. The approach we develop here
rests upon physical intuition and uses only dimensional considerations and model-independent
properties of theπ -electron energy spectrum near the band edges in semiconductor CNs. The
advantages of this approach are obvious. First, it allows one to obtain an explicit expression for
the off-resonance third-order optical susceptibilityχ(3)e (0) of CNs in a considerably simpler
fashion than other methods do. Secondly, it gives a clear physical picture of the processes
involved, clarifying the effect uponχ(3)e (0) of changing the circumference length of the tubules
and the width of the bandgap in theirπ -electron energy spectrum. One of the most remarkable
features of CNs we recover based on this approach is that the geometry of these tubules
plays a fundamental role in determining their NLO properties. We find that it is just the
nanotube radius—the geometrical parameter which specifies the tubular circumference—that
mainly controls the magnitude ofχ(3)e (0). In particular, the increase of the parameter results
in strong enhancement ofχ(3)e (0). This behaviour leads to very large values ofχ(3)e (0) which
are larger by several orders of magnitude than those reported for the fullerene molecules C60

and C70 in condensed phases. The findings indicate that CNs possess a significant potential
for applications to nonlinear optical devices.

The outline of the paper is as follows. The geometrical and electronic structure of CNs is
reviewed in section 2. In section 3 a simple physical picture of the nonlinear response of CNs
in a two-band approximation is provided and theoretical estimations forχ(3)e (0) are presented.
In section 4 we discuss the obtained results and the experimental implications of the findings.
Finally, in section 5 we present the conclusions.

2. Tubule models

We concern ourselves with an idealized system which consists of an array of identical, single-
shell and open-ended CNs that have their axes parallel to each other. The widely used model of
such tubules is a semi-infinite sheet of graphene rolled up into a cylinder of a constant radius.
The structure of a nanotube is specified by a chiral vector

C = n1a1 + n2a2 (1)

wheren1 andn2 are integers, anda1 anda2 are the primitive lattice vectors of a two-dimensional
(2D) graphite sheet (figure 1). A set of two integers (n1, n2) uniquely determines the type of
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Figure 1. Fragment of a two-dimensional graphite sheet which is rolled up in order to construct a
nanotube specified by a pair of integers (n1, n2). The unit vectors denoted byx andy are directed
along the circumference and the axis of a nanotube, respectively. Also shown are a chiral vector
C and a fundamental lattice vectorT along the direction of the tube axis.

nanotube, the tubule radiusR and the chiral angleθ being defined as

R = a0

2π
(n2

1 + n2
2 − n1n2)

1/2 (2)

θ = tan−1[
√

3n2/(2n1− n2)]. (3)

Herea0 =
√

3d0 is the lattice constant of the graphite, the carbon–carbon (C–C) bond length
beingd0 = 1.42 Å.

Among the different possible directions of rolling up the graphite sheet there are two
singled-out directions for which the superposition of the original hexagon(0, 0) with the
hexagon(n1, n2) is not accompanied by a distortion of the structure of the latter. These
two special cases corresponding to the chiral anglesθ = 0 andθ = π/6, respectively, give
rise to highly symmetric structures of two types, namely, to the(n, 0) ‘zig-zag’ nanotubes
for which two C–C bonds of each carbon hexagon are parallel to the tube axis, and to the
(2n, n) ‘arm-chair’ nanotubes for which two C–C bonds of each hexagon are perpendicular to
the axis. According to the theoretical predictions [19–27], the radius of the nanotube and the
arrangement of the carbon atoms in its shell determine whether the nanotube possesses metallic
or semiconducting properties. Thus, for instance, the arm-chair tubes are metallic, whereas
zig-zag tubes are semiconductors. Our further consideration is restricted to semiconductor
nanotubes only. For a more detailed classification of this type of tubule it is convenient to
introduce two integersp andq connected with the integersn1 andn2 by means of the relation
n1 − 2n2 = 3q + p. As shown in [28–30], the tubules withp = 0 andq 6= 0 are narrow-gap
semiconductors, whereas the tubules withp = 1, 2 and with an arbitraryq are moderate-gap
semiconductors.

To describe the electronic structure of semiconductor CNs we use the model proposed in
[27] on the basis of thek · p perturbation scheme. Within the framework of this model the
electron-energy spectrum in the lowest conduction band (c band) and in the highest valence
band (v band) can be obtained from the effective Hamiltonian [17]

Heff = (1g/2)σx − iγ∇yσy (4)

whereσx andσy are Pauli spin matrices,1g is the bandgap energy in theπ -electron spectrum,
andγ is thek · p interaction constant connected with the transfer integralt0 = −3.03 eV
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[20, 21] between theπ -orbitals of the nearest-neighbouring carbon atoms by means of the
relationγ = √3|t0|a0/2. Note that equation (4) is written down in Cartesian coordinates with
thex andy axes directed along the circumference and the axis of a nanotube, respectively.

The explicit expressions of the electron energy dispersionεc,v(k) for the two bands under
consideration can be presented in the form

εc(k) = −εv(k) = [(1g/2)
2 + γ 2k2]1/2 (5)

wherek is the component of the electron wavevector along the tubule axis. Thus, owing to a
very small radius of the CNs their energy bands exhibit typical 1D character with a divergent
density of states at the band edges. The latter are located at the K points of the hexagonal
graphite sheet Brillouin zone (figure 2). Within the zone-folding method these points are
mapped onto the0 point of the nanotube 1D Brillouin zone. The bandgap energy1g at the0
point (k = 0), is expressed as follows [28–31]

1g = (t0d0/R)[1 + (−1)p(d0/12R) cosθ ] (6)

where the second term is square brackets takes into account the dependence of1g on the chiral
angleθ for the moderate-gap semiconductor CNs (p = 1, 2). This term originates fromσ–π
hybridization, which, in its turn, is due to the effect of the curvature of nanotubes. As shown
in [28–30], for CNs with not very small radius (R > 4 Å) the second term in equation (6)
presents but a small correction to the first one and it can be neglected without sacrificing much
accuracy.

Figure 2. The first Brillouin zone of the graphite sheet. The discrete lines show the allowed values
of the electron wavevectork.

Note that although theR−1 behaviour of the gap1g, the same as equation (5) for the
π -electron energy spectrum near the valence- and conduction-band edges, has been obtained
within thek ·p approximation by using strongly simplifying assumptions, they remain in force
in evaluating the electronic structure of CNs also be means of other methods, in particular by
the tight-binding method, and in this sense they can be viewed as being model independent.

3. Third-order optical susceptibility of nanotubes in the low-frequency limit

We turn now to the evaluation of the nonlinear response of a bundle of identical and equally
oriented zig-zag nanotubes(n, 0) to the external electromagnetic field polarized parallel to
their axes. The structure of such nanotubes is described by the point symmetry group Dnh

or Dnd for even and oddn, respectively [32, 33]. Since inversion is an element of symmetry
of these groups, it is just theχ(3)(ω) which is the lowest-order nonvanishing susceptibility in
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the dipole approximation. At frequencies many times higher than the infrared frequencies of
the lattice vibration, the main contribution toχ(3)(ω) originates from the delocalizedπ -band
electrons, the motion of which may be viewed at a fixed lattice ion configuration. Then, within
a single-electron approach the full response of the system to the external AC electromagnetic
field can be obtained by the summation of response of all the electrons with regard for the
Pauli exclusion principle.

In the dipole approximation the interaction Hamiltonian of the electron with the
electromagnetic field is given by

Hint = −dE(t) = erE(t) (7)

whered is the operator of the electric dipole moment of one electron, andE(t) is the strength
of the electric field of an incident wave. From the band theory formalism it is well known that
the operator of the electron coordinater in the crystal momentum representation is separated
into two parts as follows:

r = i∇k + iX. (8)

The first part in the right-hand side of the above equation describes the motion of the free
electron in the bands characterized by the energy dispersion lawεs(k), whereas the second
part is expressed in terms of the transition matrix

Xss ′(k) =
∫
u∗sk(r)∇kus ′k(r) dr (9)

which couples a pair of electronic states, one in bands and the other in bands ′ with wavevector
of k. Hereusk(r) is the periodic part of the Bloch wave functionψsk(r) = usk(r) exp(ik · r).
The integration in equation (9) extends over the unit cell, which presents the rectangle defined
by the chiral vectorC and the translation vectorT (see figure 1), the latter being equal to
a1 + 2a2 for zig-zag nanotubes.

From equations (7)–(9) it follows that there are two distinct electronic contributions to the
electric dipole moment of the system. The first of them is associated with intraband electron
motion under the action of the applied field, i.e. the electric field of the light wave. The
second contribution arises from the virtual interband transitions induced by the external field
and occurring between only states of the samek value in different bands. Consequently, there
are three main electronic mechanisms that lead to the third-order NLO response, namely, the
motion of free electrons in partially occupied bands, virtual electron transitions across the
bandgap and, finally, the combined motion of electrons associated with intraband–interband
transitions. Hereafter the subscripts ‘intra’, ‘inter’ and ‘comb’ are used to specify the
corresponding contributions to the susceptibilityχ(3)e . It should be noted that for the system
under consideration the first of the above mentioned contributions,χ

(3)
intra, can be neglected. The

reason is that for the real single-shell CNs, the diameters of which range typically between 7
and 15 Å, the bandgap energy1g is much greater than the thermal energykBT . In this case
the electron occupation for the conduction band states will be determined by the doping level
of CNs. Hence, for undoped semiconductor CNs the v band will be fully occupied, whereas
the c band will be quite empty even at room temperature. Thus, the intraband contribution to
χ(3)e vanishes and we can write

χ(3)e (ω) = χ(3)inter(ω) + χ(3)comb(ω). (10)

For incident photon energy well below the fundamental absorption edge (¯hω � 1g),
the susceptibilities in equation (10) will not depend on the frequencyω at all and theoretical
estimations of the first and second terms of equation (10) can easily be obtained on physical
grounds.
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Figure 3. A schematic representation of the excitation pathways contributing to the third-order
optical susceptibilityχ(3)e (0) in a two-band model of the electronic structure of CNs. (a) Shows
the purely interband excitations and (b) shows the combined intraband–interband ones.

Let us consider first the contribution toχ(3)e associated with purely interband transitions
(figure 3(a)). In estimatingχ(3)inter we must take into account two parameters which are relevant
to the NLO process, namely, the frequencyωcv of the above mentioned transitions and the
part of the dipole momentdcv arising from the matrix elementXcv of the lattice-periodic
operatorX. Based on simple dimensional considerations we then obtain in the low-frequency
approximation

χ
(3)
inter(0) ≈ −

N

V

d4
cv

(h̄ωcv)3
≈ −N

V

(eXcv)
4

13
g

(11)

whereN/V is the number of unit cells per unit volume.
The negative sign of the susceptibilityχ(3)inter(0) is prompted by the following parallel which

makes this result understandable. As already noted, the virtual interband excitations in our
model effectively couple only specific pairs of states, namely, only states of the samek value
in different bands as the photon momentum is negligible. Therefore, as far as the interband
contribution toχ(3)e (0) is concerned the model under consideration can be represented as a set of
independent simple two-level systems with the appropriate (for each value of the wavevector)
energy separation between the levels and oscillator strength for interlevel transitions. The
electron excitations for each above mentioned pair of allowedk states can be treated then as
being completely localized and, therefore, one can expect a negative sign ofχ

(3)
inter(0) for a

large number of such systems brought together to form a whole [34]. It is for this reason that
the minus sign is written in the right-hand side of equation (11). The validity of the above
considerations can be confirmed by the evaluation ofχ

(3)
inter(0) on the basis of the formalism

outlined in [17].
We turn now to the estimation of the dipole transition matrix elementXcv. As we show

below it can be done without recourse to a direct calculation ofXcv by using equation (9) (the
latter would require detailed information on the electronic states of the CNs), but first it is
necessary to make the following remark. Because of the divergence of the joint density of the
electronic statesρ(ωcv) at the Brillouin zone centre where the valence- and conduction band
edges are located,

ρ(ωcv) = 2

π

(
dh̄ωcv

dk

)−1

∝ 1√
(h̄ωcv)2 −12

g

(12)

the main contribution toXcv arises from the band-edge electron transitions. Since the group of
the wavevector at the extremum point of the bands admits inversion as a symmetry operation,
the Bloch amplitudesuck anduvk have opposite parity at this point and can be chosen as entirely
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real. From equation (9) it then follows that the matrix elementXcv is purely real and satisfies
the equation

Xcv(k) = −Xvc(k). (13)

Now, to estimateXcv we can make use of the so-calledf -sum rule for the electric dipole
transitions:

me

h̄2

∂2εs(k)

∂k2
= 1 +

2me
h̄2

∑
s ′ 6=s

[εs(k)− εs ′(k)]|Xss ′(k)|2 (14)

whereme is the free electron mass. For the two-band model under consideration the sum in
the right-hand side of equation (14) contains only one term and from equations (13) and (14)
we easily obtain

Xcv ≈ γ1g

(h̄ωcv)2
≈ γ

1g

. (15)

Finally, it is not hard to show that for a hypothetical bulk specimen of aligned zig-zag CNs
(n, 0) the number of unit cells per unit volume is given by

N

V
= n

2
√

3π2R3
. (16)

Now, using equations (6), (11), (15) and (16) we obtain

χ
(3)
inter(0) ≈ −

(3e)4n

25
√

3π2

R

13
g

= A1
(3eR)4

π2γ 3
A1 = −35/2

28
n. (17)

In a similar fashion, it is easy to estimate the contribution to the susceptibilityχ(3)e (0)
associated with combined intraband–interband transitions. The latter are shown schematically
in figure 3(b). As is clear from the diagram in figure 3(b), this contribution originates from
both the acceleration term of the coordinate i(∂/∂k) and from the regular interband termXcv.
The combination of these terms relevant to the third-order NLO susceptibilityχ

(3)
comb(0) follows

uniquely from the simple dimensional considerations with regard for the physical picture of
the processes involved. In the low-frequency limit we have

χ
(3)
comb(0) ≈

N

V

e2

h̄ωcv

[
∂

∂k

(
dcv

h̄ωcv

)]2

≈ N

V

e4

1g

[
∂

∂k

(
Xcv

h̄ωcv

)]2

. (18)

In order to make this equation more physically tractable, we prefer to rewrite it as follows

χ
(3)
comb(0) ≈

N

V

4e4

1gh̄
2v

2

[
∂

∂ωcv

(
Xcv

ωcv

)]2

(19)

wherev is the electron velocity at the band edge. From the expression, equation (4), for the
effective Hamiltonian it follows thatv ∼ γ /h̄. Using equation (15), (16) and (19), we then
obtain

χ
(3)
comb(0) ≈

(3e)4n

23
√

3π2

R

13
g

= A2
(3eR)4

π2γ 3
A2 = 35/2

26
n. (20)

Finally, using equations (17) and (20) in equation (10) yields

χ(3)e (0) ≈ A(3eR)
4

π2γ 3
A = 37/2

28
n. (21)

The positive sign of the total susceptibilityχ(3)e (0) indicates that the combined
intraband–interbandπ -electron transitions mainly contribute to the NLO response of the CNs.
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The predominance of the combined term inχ(3)e (0) is easy to understand on the qualitative
level. It is the consequence of the rapid variation of the dipole matrix elementXcv(k) ask
moves away from the Brillouin zone centre whereXcv(k) achieves a maximum value (see
equation (15)) and where the joint density of the electronic states becomes theoretically finite
(see equation (12)). The latter two properties are typical of quasi-1D electron systems, so that
the positive sign ofχ(3)e (0) just reflects the 1D character of the highly delocalizedπ -electron
system in CNs.

The above estimation ofχ(3)e (0) is in good agreement with the exact solution for the
third-order susceptibility of CNs obtained in our previous study [17] on the basis of the
Genkin–Mednis formalism [18]. The analytical result forχ(3)e (0) derived in [17] has the
form

χ(3)e (0) = A(3eR)
4

π2γ 3
A = A1 +A2 = 4

5
(22)

whereA1 andA2 are constants equal to−8/35 and 36/35, respectively. It is easy to see
that the order of magnitude of these constants is the same as the corresponding factors in
equations (17) and (20) with the integern 6 20 typical of single-shell zig-zag nanotubes
which are experimentally available at present.

4. Discussion

As seen from equations (21) and (22), the low-frequency susceptibilityχ(3)e (0) can provide
information on the main parameters of the geometrical and electronic structure of nanotubes,
namely, on their radiusR and on thek · p interaction constantγ , the latter being connected
with the interaction energyt0 between the two 2p electrons on the nearest-neighbouringπ

orbitals via the simple relation mentioned in section 3. According to equation (6), it is just
these two parameters that determine the width of the band gap1g in theπ -electron energy
spectrum of nonchiral semiconductor CNs. Therefore, if we know the magnitude of one of
them we can determine that of the other by measuring the quantityχ(3)e (0) and thus determine
the bandgap energy1g. Such a method of experimental estimation of the parameterst0, γ and
1g may be of interest because the resolution of a modern electron microscope is sufficient for
precise measurements of the radii of CNs. Of course, the method suggested here can be used
only for rough estimations of the above mentioned parameters, since the present experimental
NLO studies in themselves are not able to provide a good enough accuracy.

The most important result we predict on the basis of the obtained equation (21) is
considerable enhancement of the magnitude ofχ(3)e (0) for CNs as compared with those reported
for the fullerenes C60 and C70 in condensed phases. Indeed, a number of authors [6, 10, 11]
who have performed measurements of the third-order NLO response of such fullerenes found
the off-resonanceχ(3) values to be around 10−12 esu; the experimental data are very close to
those obtained by theoretical calculations [13, 14]. Meanwhile, equation (22) at typical values
of the parameters of single-shell CNs (R = 5.5 Å andγ = 6.46 eV) yieldsχ(3)e (0) ∼ 10−9 esu,
i.e. three orders of magnitude larger than for the fullerenes. Such an essential difference in
the order of magnitude ofχ(3)e (0) for such closely related objects as fullerenes and CNs can
be attributed to the fact that in fullerene molecules, because of their spherelike geometries,
not all the possibilities inherent in the very strongly delocalized nature of theπ -electron states
are realized, as is the case for quasi-1D tubular systems. The origin of the very large optical
nonlinearity of CNs is accounted for by the coincidence of three peculiarities of their electronic
structure at one and the same point of the 1D Brillouin zone, namely, the theoretical infinite joint
density of the electron states, the maximum value of the dipole transition matrix element and the
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minimum value of the width of the band gap in theπ -electron energy spectrum. In this respect
CNs are reminiscent of conjugated chain polymers such as polyacetylene or polydiacetylenes
which also exhibit extremely high values of non-resonant third-order susceptibility.

Another remarkable feature predicted by equation (21) is the strong nonlinear dependence
of the off-resonance susceptibilityχ(3)e (0) on the nanotube radiusR: χ(3)e (0) ∝ R4. The
dependence suggests that one could use it in order to design new NLO materials with enhanced
cubic susceptibilities. Thus, for instance, the increase ofR by three times as against the above
mentioned typical value equal to 5.5 Å leads to the enhancement ofχ(3)e (0) up to a record figure
of the order of 10−7 esu. From a practical viewpoint it is desirable, of course, that the cubic
susceptibility should have the largest possible values in the region far from the single-photon
resonance since in this case the optical losses will be minimal and the response time will be
the shortest. On the other hand, it should be noted that the growth ofR—the parameter which
mainly governs the optical nonlinearity—leads to a narrowing of the transparency region of
nanotubes. However, with the increase ofR the narrowing falls off asR−1, since the bandgap
depends inversely on the tube radius. Hence, the decrease of the transparency region proceeds
much more slowly than the increase ofχ(3)e (0) with R. Thus, in order to obtain a larger
NLO response of the CNs in the non-resonant regime it is preferable to use nanotubes with
a larger radius, of course, under otherwise equal conditions. Therefore, to make progress in
the possible applications of nanotubes in different NLO devices one is prompted to develop
new methods for fabricating arrays of aligned nanotubes with fairly large radii (R ∼ 15–20 Å)
which would allow the NLO response of nanotubes in the transparency region to be optimized.

Finally, it should be stressed that the approach proposed in this paper is valid only in
the low-frequency limit when the virtual transitions ofπ -electrons are the basic microscopic
reasons for the optical nonlinearities of CNs. The approximations we have used lose their
force when the frequency of the incident radiation approaches the fundamental absorption
edge. In this case, in contrast to that of nonlinearities created by virtual processes, real excited
state populations are generated, which leads to a giant enhancement of the NLO signals. In
this situation, in order to obtain analytical results for the third-order susceptibilityχ(3)e (ω) one
should use a more rigorous theory, since qualitative considerations alone are insufficient for
the purpose. A detailed treatment of this problem will be given elsewhere [35].

5. Conclusions

In this paper we have studied the third-order NLO susceptibility of semiconductor CNs in
the spectral region where the optical frequencies are well below the fundamental absorption
edge. Our approach is based upon simple qualitative considerations and makes use of only
model-independent properties of theπ -electron energy spectrum of CNs near the valence-
and conduction-band edges. The advantage of the approach is that it provides a clear physical
picture of the processes involved and a deeper understanding of the basic physical mechanisms
of the low-frequency optical nonlinearity of CNs. In particular, it enables one to clarify the
physical implication of our central result (equation (21)) establishing the relationship between
the susceptibilityχ(3)e (0)and the two characteristic parameters of the geometrical and electronic
structure of nanotubes, namely, their radiusR and thek · p interaction constantγ . The above
mentioned equation emerging naturally from our considerations is consistent (with the accuracy
up to a numerical coefficient) with that obtained previously on the basis of the systematic
analytical approach [17]. According to equation (21), the low-frequency susceptibilityχ(3)e (0)
of CNs scales as the fourth power ofR and can exceed the corresponding NLO susceptibilities
of the fullerenes C60 and C70 by several orders of magnitude. The results obtained allow one
to consider semiconductor CNs as a very promising material for applications in NLO devices.
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In order to emphasize the basic physical ideas we have restricted our consideration to
nonchiral CNs possessing a centre of inversion. As has been already mentioned, in such
systems the even-order susceptibilities vanish and it is just the cubic susceptibilityχ(3) which
is the lowest-order nonvanishing nonlinearity. In terms of the future efforts in this field, we
believe that investigations of the second-order NLO susceptibilityχ(2) of CNs without an
inversion centre are imperative. Among other issues, the effect of chirality of CNs on their
NLO response awaits a thorough investigation.
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